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Abstract
Background In patients with mild cognitive impairment (MCI), enhanced cerebral amyloid-β plaque burden is a high-risk 
factor to develop dementia with Alzheimer’s disease (AD). Not all patients have immediate access to the assessment of 
amyloid status (A-status) via gold standard methods. It may therefore be of interest to find suitable biomarkers to preselect 
patients benefitting most from additional workup of the A-status. In this study, we propose a machine learning–based gate-
keeping system for the prediction of A-status on the grounds of pre-existing information on APOE-genotype 18F-FDG PET, 
age, and sex.
Methods Three hundred and forty-two MCI patients were used to train different machine learning classifiers to predict 
A-status majority classes among APOE-ε4 non-carriers (APOE4-nc; majority class: amyloid negative (Aβ-)) and carriers 
(APOE4-c; majority class: amyloid positive (Aβ +)) from 18F-FDG-PET, age, and sex. Classifiers were tested on two differ-
ent datasets. Finally, frequencies of progression to dementia were compared between gold standard and predicted A-status.
Results Aβ- in APOE4-nc and Aβ + in APOE4-c were predicted with a precision of 87% and a recall of 79% and 51%, 
respectively. Predicted A-status and gold standard A-status were at least equally indicative of risk of progression to dementia.
Conclusion We developed an algorithm allowing approximation of A-status in MCI with good reliability using APOE-
genotype, 18F-FDG PET, age, and sex information. The algorithm could enable better estimation of individual risk for 
developing AD based on existing biomarker information, and support efficient selection of patients who would benefit most 
from further etiological clarification. Further potential utility in clinical routine and clinical trials is discussed.
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Introduction

In patients with mild cognitive impairment (MCI), enhanced 
accumulation of extracellular amyloid-β plaques and pro-
nounced neurodegeneration reliably predict the development 
of dementia with Alzheimer’s disease (AD) [1]. MCI diag-
noses entail that an individual has cognitive complaints and 
objective impairment in one or more cognitive domains, in 
the absence of dementia or impairment in functional every-
day life [2]. Disease prognoses are of impeccable importance 
to MCI patients to make provision for the future, as well as 
to obtain access to treatment or clinical trials, which are usu-
ally contingent on a positive amyloid status (A-status) [e.g., 
3]. A-status can be assessed via positron emission tomog-
raphy (PET) imaging or via the analysis of beta-amyloid 
markers derived from cerebrospinal fluid (CSF). A positive 
A-status on PET indicates high cerebral amyloid pathology 
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and is a key inclusion criterion for several clinical trials 
on anti-amyloid medications [4]. Moreover, PET A-status 
avoids signal fluctuations, which are frequently reported for 
CSF biomarkers [5], and no contraindications are known 
for PET, while some exist for lumbar puncture (e.g., anti-
coagulants), which is necessary for CSF acquisition. Not all 
patients have access to the assessment of various biomark-
ers to clarify individual aetiology of cognitive impairment, 
due to availability (financial or logistic). It may therefore be 
of interest to find suitable biomarkers to preselect patients 
benefitting most from additional workup of the A-status.

While the A-status enables some insights into individu-
als’ risk of developing AD, recommendations for a reli-
able biomarker-based diagnosis of AD include additional 
quantification of cerebral tau load (T-status), as well as the 
extent of neurodegeneration (N-status), thus constituting the 
A-T-N classification scheme [6]. By themselves, amyloid 
biomarkers are insufficient in monitoring the progression of 
AD after symptom onset [7]. N-status can be assessed via 
brain magnetic resonance imaging (MRI) or brain 18F-FDG-
PET. Besides its utility in the diagnostic process of AD, 
18F-FDG-PET has proven utility in disentangling several 
phenotypes of dementia and cognitive decline [8, 9]. In MCI, 
amyloid burden is inversely correlated with glucose metab-
olism in the brain [10]. As compared to MRI, 18F-FDG-
PET more accurately and more timely captures (even very 
early) neurodegeneration-related changes in the brain [11, 
12]. Finally, 18F-FDG-PET is relatively inexpensive/broadly 
available and expertise with interpretation of scans is preva-
lent. Thus, recent expert consensus recommends 18F-FDG-
PET ahead of amyloid imaging or other profound examina-
tions in the diagnostic sequence for patients with suspected 
AD [7]. Moreover, carriership of the ε4 allele of APOE, 
which represents the greatest genetic risk for Alzheimer’s 
disease, can be easily assessed by inexpensive, simple blood 
screening. Although it is currently not part of the diagnostic 
recommendation guidelines given its limited utility, it is fre-
quently assessed in research settings and it has been associ-
ated with enhanced (susceptibility to) amyloid pathology 
[, 13–15]. The combined observation of information about 
cerebral glucose metabolism (N-status) and APOE-genotype 
(genetic predisposition for AD), as well as demographic fac-
tors, such as age and sex, enhance prognostic accuracy of 
AD in patients with MCI [16]. Such information, available 
to a relevant proportion of patients, may be used to clas-
sify A-status in order to facilitate and stratify the diagnosis 
procedure of MCI. Potentially, such information could be 
extracted by state-of-the-art machine learning algorithms. 
Together, these assumptions formed the motivation for the 
current study.

Recently, multimodal machine learning studies reported 
moderately successful classification of A-status from various 
combinations of known AD risk factors, such as carriership 

of the APOE-ε4 allele, higher age, female sex, and N-status 
measures [, 17–21]. Despite the clear advantage of 18F-FDG-
PET to depict disease-related neurodegenerative changes, 
no studies exist, which incorporate 18F-FDG-PET into a 
multimodal framework for A-status classification. State-
of-the-art approaches usually provide no indication of the 
utility of predicted A-status as a risk factor for progression 
to dementia despite moderately high misclassification rates 
(20–25%). The high misclassification rates further indicate 
that A-status cannot be extracted for all individuals by means 
of available data. However, it may be possible to substitute 
amyloid testing for a sub-group of individuals, and thus to 
effectively select subjects requiring further testing, i.e., to 
introduce a gatekeeping system for A-status classification. 
In a gatekeeping system, logical “OR gates” enable to create 
sub-groups of individuals, for whom classification with a 
specific label is precise (i.e., there is a high number of cor-
rectly classified individuals) and efficient (i.e., the number 
of correctly identified individuals is high).

The goals of this study are two-fold: First, we imple-
mented a first-of-its-kind multimodal gatekeeping system 
for A-status classification in MCI patients, which identi-
fies amyloid negative (Aβ-) or amyloid positive (Aβ+) 
individuals with high precision. To do so, we introduced 
an “OR gate,” where participants are split into groups of 
APOE-ε4 non-carriers (APOE4-nc) and APOE-ε4 carriers 
(APOE4-c), and subsequently trained classifiers to predict 
either Aβ- or Aβ+, respectively, based on 18F-FDG-PET, 
age, and sex within these groups. Among APOE4-nc and 
APOE4-c, the predominant A-status, i.e., the majority class, 
is Aβ- and Aβ+, respectively. By exploiting machine learn-
ing algorithms’ inherent preference for majority class predic-
tions and simultaneously requiring high precision of such 
predictions, we expected to achieve high efficiency of the 
gatekeeping system. Second, we compared the risk of pro-
gression to dementia of multimodality-predicted and gold 
standard A-status to test whether multimodality-predicted 
A-status has the potential to substitute gold standard amyloid 
testing for the identified individuals.

Method

ADNI data

Baseline 18F-FDG-PET scans of 588 MCI patients used in 
the preparation of this article were obtained from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database 
adni. loni. usc. edu. The primary goal of ADNI has been to test 
whether biological markers and clinical and neuropsycho-
logical assessment can be combined to measure the progres-
sion of MCI and AD. Inclusion criteria were (1) a diagnosis 
of MCI in accordance with the recommended diagnostic 
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National Institute on Aging and Alzheimer’s Association 
guidelines [2], (2) the availability of 18F-FDG-PET and 
amyloid PET biomarkers at baseline, and (3) availability of 
information on age, sex, and APOE-genotype. We excluded 
participants (1) who showed contradictory information about 
A-status across PET and CSF A-status (see section “Amy-
loid status”) and (2) who showed standard uptake value 
ratios (SUVr) above three times the interquartile range in 
18F-FDG-PET scans (see section “18F-FDG-PET acquisition 
and pre-processing”).

Internal memory clinic sample for external 
validation

To test generalization performance of the gatekeeping sys-
tems for APOE4-c and APOE4-nc, we tested our results on 
an external dataset, an internal memory clinic (IMC) sample. 
The IMC includes 39 MCI patients for whom 11C-PiB-PET 
scans, 18F-FDG-PET scans, and APOE-genotype, age, and 
sex were available. This dataset was collected at the Tech-
nical University of Munich. MCI diagnoses were provided 
on a value of 0.5 on the clinical dementia rating scale and 
preserved activities of daily living [22, 23]. All participants 
provided written informed consent and the study protocol 
was approved by the ethics committee of the Technical Uni-
versity of Munich.

Amyloid status

In the ADNI sample, MCI patients’ A-status was assessed 
by amyloid PET (n = 543). PET tracers included 18F-flor-
betaben- (FBB; n = 63), 11C-Pittsburgh compound-B- (PiB; 
n = 13), or 18F-florbetapir-PET (AV45; n = 467). Amyloid-
PET acquisition and pre-processing details for the ADNI 
data have previously been published [, 24–27]. Briefly, the 
scans were co-registered to corresponding MRI images in 
native space and SUVrs were calculated voxel-wise using 
the whole cerebellum as a reference region. In the IMC sam-
ple, A-status was assessed exclusively via PiB-PET. Scans 
were acquired on a Siemens scanner 40–70 min (3 × 10 min) 
after injection with an average dose of 370 MBq (10 MCi) 
and subsequently co-registered and normalized to an MRI 
template in native space. Again, SUVrs were extracted using 
the whole cerebellum as a reference region. A global SUVr 
score was calculated as the average SUVr from frontal, ante-
rior/posterior cingulate, lateral parietal and lateral temporal 
(FBB and AV45) or frontal, parietal, precuneus, and ante-
rior cingulate regions (PiB, both samples) [, 24–27]. Finally, 
global A-status for both samples was determined based on 
recommended cut-off values defined by  SUVRAV45 > = 1.11, 
 SUVRPiB > = 1.41, SUVR FBB > = 1.08 [24, 25, 28]. For 
individuals who additionally received lumbar puncture for 
amyloid assessment, amyloid-beta1-42 peptide in CSF with 

a cut-off of 192 pg/ml was used to validate amyloid status. 
Consequently, 51 individuals were excluded from the cur-
rent dataset (14 who were Aβ negative on CSF, but positive 
on PET, and 37 who were Aβ positive on CSF, but negative 
on PET).

Non‑imaging variables

APOE-genotype in all participants was determined from 
blood samples [29]. We distinguished between APOE-ε4 
carriers (APOE4-c), who had at least one APOE-ε4 allele, 
and APOE-ε4 non-carriers (APOE4-nc), who had no 
APOE-ε4 allele. Age at clinical diagnosis and sex were 
available for all participants.

18F‑FDG‑PET acquisition and pre‑processing

All participants in the ADNI sample received an 18F-FDG-
PET scan with an average dose of 185 MBq (5 MCi). Scans 
were acquired dynamically 30–60 min (6 × 5 min frames) 
post-injection. 18F-FDG-PET scans were downloaded with 
minimal pre-processing (“co-registered, averaged”-format) 
between November 2020 and February 2021. In the IMC 
sample, 18F-FDG-PET scans were acquired dynamically on 
a Siemens scanner, 30–50 min (1 × 10 min frame, 2 × 5 min 
frames) after injection of 185 MBq (5 MCi). Subsequently, 
frames were averaged over all frames. Using the Statistical 
Parametric Mapping 12 toolbox (SPM12; www. fil. ion. ucl. 
ac. uk), we aligned all 18F-FDG-PET scans to the anterior 
commissure/posterior commissure. Scans were subsequently 
co-registered and spatially normalized to an MRI template 
in native space and SUVr images were generated, using 
the pons as a reference region [30]. Finally, mean regional 
SUVrs of 90 (non-cerebellar) cortical and subcortical brain 
regions were extracted using the automated anatomical labe-
ling (AAL) atlas [31]. By means of an outlier analysis, sub-
jects, that were outside of three times the interquartile range 
of single regions’ SUVRs, were excluded from our sample 
(n = 2). This resulted in the final number of 490 participants.

Final samples

To train the classifiers, participants from the ADNI and IMC 
sample were first grouped by APOE-ε4 carriership (APOE4-
nc and APOE4-c). Subsequently, stratified splits were cre-
ated from the ADNI sample, where 70% of the ADNI data 
were used as a training set, while the remaining 30% and 
the IMC sample constituted the test sets. Stratified splitting 
allows to maintain the overall proportion of both classes 
(Aβ- and Aβ+) in the train set and test set. To compare rates 
of progression to dementia in the last step of our analyses, 
only participants from the ADNI test set were considered, 

http://www.fil.ion.ucl.ac.uk
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who received at least two follow-up diagnoses, at least 
6 months apart (n = 118).

Pipeline architectures

This section describes the machine learning pipelines. 
Briefly, after grouping into APOE4-nc and APOE4-c, we 
first scaled (section “Scaling”), and then upsampled the data 
(section “Upsampling”), and finally trained and tested the 
classifiers. A schematic illustration of the machine learn-
ing pipeline is available in the Supplementary Material 
(Fig. S1).

Scaling

Feature scaling is a critical part of pre-processing the input 
for machine learning classifiers. Data is either normalized; 
i.e., values are scaled to fall between a pre-defined range, or 
standardized; i.e., values are scaled to have zero mean and a 
variance of 1. Here, we standardized age and 18F-FDG-PET 
data (region-wise) and applied the estimated transformation 
parameters to the test sets. Sex (male = 0; female = 1) was 
coded in a binary manner.

Upsampling

Upsampling refers to the process of randomly sampling data 
for duplication in the minority class with replacement. Due 
to the imbalanced nature of the sub-samples, we upsampled 
the under-represented (i.e., minority) class of the train sets 
(Aβ+ in the APOE4-nc sample; Aβ- in APOE4-c sample) 
to match the number of participants from the respective 
majority class. This resulted in training set sizes of n = 268 
(APOE4-nc) and n = 334 (APOE4-c).

Classifier training

Previous research has mostly used logistic regression clas-
sifiers, a rather simple machine learning classifier, for the 
classification of A-status in MCI patients. Since there is 
no existing rationale for complexity of the current task, we 
tested a variety of simple and more complex classifiers. 
The same set of six machine learning classifiers (K-nearest 
neighbours (KNN), support vector machine (SVM), Gauss-
ian process classifier (GPC), a feed-forward deep neural 
network (DNN), random forest classifier (RFC), and logis-
tic regression (LR)) and the same set of possible hyperpa-
rameter configurations per classifier (see Supplementary 
Table S1) were used for both the APOE4-nc and APOE4-c 
groups. Hyperparameters are parameters that control the 
learning process. Here, the optimal combination of hyper-
parameters for each classifier was determined via ten-fold 
cross-validated grid search, yielding six transition models 

(one for each classifier). During cross-validation, strati-
fied splits were used to maintain the overall distribution of 
Aβ-/Aβ + in each fold. A configuration of hyperparameters 
was considered “optimal,” if it yielded the highest average 
F1/10-score across validation folds as compared to all other 
combinations of hyperparameters in the same classifier. The 
F1/10-score is a variant of the Fβ-score, where β refers to 
the relative contribution of recall (proportion of relevant 
instances identified) over precision (proportion of correctly 
classified relevant instances) to the metric (Eq. 1). With β 
set to 1/10, transition models are chosen, which prioritize 
precision over recall by a factor of 10, thereby enabling a 
strong focus of correctness of classifications.

Finally, the transition model with the best validation score 
(rounded to full percent) was chosen as the final model, and 
generalizability to the test sets was evaluated on the ADNI 
and IMC test set, separately. In case several transition mod-
els achieved the best validation score, the model with the 
highest performance on the ADNI test set was chosen and 
subsequently evaluated on both test sets. All classifiers were 
implemented using scikit-learn in Python 3.8 on a 64-bit 
Linux machine with 18 CPU cores and 2 threads per kernel.

To provide an estimate of model overfitting on the major-
ity class, we additionally tested the final model’s perfor-
mance on randomly downsampled balanced subsets of the 
ADNI sample (nAPOE4-nc = 66; nAPOE4-c = 28), where the 
number of majority class individuals was reduced to match 
the minority class. To allow for a reliable estimate, we report 
average model performance on n2 randomly downsampled 
subsets.

Feature importance

In order to examine the biological plausibility of the models, 
we calculated each feature’s permutation importance. Using 
permutation importance, the importance of single features 
is assessed by randomly shuffling an input feature, before 
providing the complete feature set to a trained classifier. 
When important features are permuted, model performance 
will decrease. Inverting the margin of performance decrease 
yields the permutation importance (δ), where higher values 
correspond to more important features. Here, we permuted 
each feature 1000 times and calculated the average δ on the 
(ADNI) test set [32].

Due to the novelty of this approach, no trivial baseline 
could be established for comparison. Therefore, to vali-
date our models, we performed an ablation study, wherein 
all classifiers were trained either on the whole training set 
(CL) or grouped by APOE4 carriership, i.e., following the 

(1)F� =
(

1 + �2
)

∗
Precision ∗ Recall

(�2 ∗ Precision) + Recall
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gatekeeping approach (GK). During training, models maxi-
mized balanced accuracy (BA; see (2))

or the F1/10-score (F1/10). Furthermore, we also assessed 
classification performance on the full set of features versus 
on reduced subsets. In the latter, either 18F-FDG-PET signal, 
APOE-ε4 carriership, age, or sex was completely removed 
from the input (e.g., age was removed in GK-age), or only a 
specified percentage (10% or 50%) of “ad-hoc most relevant” 
features were provided (e.g., only the 10% of features were 
provided in GK-sub10). Ad-hoc feature relevance was deter-
mined with the mutual information criterion, which quanti-
fies the dependency between an input feature and outcome 
(here: A-status) as the reduction of entropy in the outcome 
given a specific input feature. The most entropy-reducing 
input features were considered “most relevant”.

Comparison of multimodality‑predicted and gold 
standard A‑status in dementia risk assessment

By comparing the risk of progression to dementia between 
multimodality-predicted and gold standard A-status, we 
aimed to test whether predicted A-status is comparably 
indicative of risk of progression to dementia as gold stand-
ard A-status. To do so, we considered subsets of APOE4-
nc and APOE4-c participants from the ADNI test set, who 
had at least two follow-up diagnoses after baseline. Sub-
sequently, we compared the proportion of individuals who 
received a diagnosis of dementia during follow-up between 
gold standard and multimodality-predicted Aβ- in APOE4-
nc and between gold standard and multimodality-predicted 
Aβ+ in APOE4-c by means of the χ2 test with a significance 
level of 0.05. Dementia at follow-up was defined by the 
ADNI standard, which included MMSE scores between 20 
and 26 (inclusive), a CDR of 0.5 or 1.0, and individuals 
had to meet the NINCDS/ADRDA criteria for probable AD 

(2)Balanced Accuracy =
Sensitivity + Specif icity

2

[33]. Progression to dementia was further sub-divided into 
three categories: (1) Probable AD (participants who were 
amyloid positive as determined by AV45 PET at or before 
time point of diagnosis), (2) non-AD dementia (participants 
who were amyloid negative as determined by AV45 PET at 
time point of diagnosis or later), and (3) possible AD (par-
ticipants where AV45 PET was not available at time point 
of dementia diagnosis).

Results

Participant characteristics

Scans of 529 MCI patients (490 subjects from the ADNI 
and 39 subjects from the IMC) were split into two groups: 
APOE4-nc (nAPOE4-nc = 249) and APOE4-c (nAPOE4-c = 241). 
Classifiers were cross-validated on 70% of the ADNI data, 
and tested on the remaining 30%, as well as the IMC sample. 
Table 1 and Supplementary Tables 1 and 2 show the clinical 
characteristics of the training and both test sets. All subjects 
were on average (SD) 71.6 (7.4) years old and 223 (46%) 
subjects were female. Two hundred eighty-one participants 
(57%) were Aβ+. There was no significant difference of 
sex between Aβ+ and Aβ- participants. The time interval 
between the 18F-FDG-PET and amyloid assessment was on 
average 13 days (SD = 84 days).

APOE‑ε4‑dependent gatekeeping of amyloid status

In APOE4-nc, KNN outperformed all other models in the 
classification of Aβ- during ten-fold cross-validation (see 
Supplementary Fig. S2), yielding a mean F1/10-score of 94%. 
On the ADNI test set, an  F1/10-score of 87% was reached, 
which was constituted by a precision of 86%, and a recall 
of 51%, thus demonstrating high performance on unseen 
data. On the IMC, an F1/10-score of 71% was reached, com-
posed of a precision of 71% and a recall of 50%, indicating 
that inter-dataset generalizability was limited. To deliver an 

Table 1  Training sample 
demographics

Global AV45, mean global SUVR with most frequently used AV45 tracer; CSF, mean amyloid-beta1–42 
peptide in CSF; MMSE, Mini-Mental State Exam

APOE4-nc sample APOE4-c sample

Aβ- Aβ+ Aβ- Aβ+ 

n 117 57 29 139
Mean age [years (SD)] 70.6 (7.65) 74.5 (7.25) 67.1 (8.08) 72.4 (6.59)
Sex (%Female) 46% 42% 45% 42%
Ethnicity (%White) 90% 96% 86% 94%
Global AV45 [SUVR (SD)] 1.00 (0.05) 1.37 (0.17) 1.00 (0.06) 1.40 (0.16)
MMSE (SD) 28 (1.64) 28 (1.70) 29 (1.50) 27 (1.89)
CDR sum boxes (SD) 1.31 (0.84) 1.61 (0.86) 1.16 (0.67) 1.78 (1.03)
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estimate of model overfitting, we calculated average F1/10-
scores on randomly downsampled, balanced subsets of the 
ADNI and IMC test sets, in which the number of Aβ- indi-
viduals was reduced to match the number of Aβ+ individu-
als. A high average F1/10-score of 75% was maintained on 
the balanced ADNI test set (precision: 75%; recall: 51%), 
thus proving to be relatively stable against data imbalance.

Permutation importance analyses revealed that high 
18F-FDG-PET signal in the right middle occipital lobe 
(δ = 0.037), as well as several frontal (left insula, left mid-
dle frontal lobe, left superior frontal lobe, left and right 
medial orbitofrontal lobe, left and right rectus), and temporal 
regions (left and right middle temporal lobe and temporal 
pole) was most indicative of Aβ- in APOE4-nc (Fig. 1a). 
Across test subjects, signal distribution in Aβ- and Aβ+ was 
not different, thus indicating that metabolism in networks of 
brain regions, rather than individual brain regions, caused 
the algorithm’s high performance. Lower age (δ = 0.023) was 
moderately indicative of Aβ- (Fig. 1b), while sex (δ = 0.007) 
had low impact on the classification outcome.

In APOE4-c, an SVC outperformed all other models in 
the classification of Aβ+ in the ten-fold cross-validation 
stage, while a total of three classifiers reached close to 100% 
during cross-validation (see Supplementary Fig. S2). On the 
ADNI test set, an F1/10-score of 87% was reached, which 
was constituted by a precision of 87%, and a recall of 79%, 
thus indicating high performance on unseen data. On the 

IMC dataset, F1/10, precision, and recall scores of 91%, 91%, 
and 95% were reached. However, analyses on the balanced 
subsets showed that the majority class was predicted more 
frequently, and the average F1/10-score was only 57% (preci-
sion: 57%; recall: 100%). Optimal hyperparameter configu-
rations for the classification of A-status in APOE4-nc and 
APOE4-c can be found in the Supplementary Materials.

Permutation importance analyses showed that 18F-FDG-
PET signal in the right middle cingulate gyrus, bilateral 
angular gyrus, and subcortical regions (left hippocampus 
and right amygdala) pre-dominantly influenced classification 
of Aβ+ in APOE4-c. Again, no difference of SUVR distribu-
tion was detected across subjects in these regions (Fig. 1c). 
Age and sex did not influence classification outcome.

Finally, we performed an ablation study, wherein we 
investigated the importance of our input features, as well 
as the gatekeeping approach. Table 2 demonstrates that the 
proposed gatekeeping algorithm with the complete feature 
sets yielded more precise classifications than conventional 
classification, or gatekeeping algorithms trained on only a 
subset of data. Ablation of all 18F-FDG-PET features in both 
groups resulted in lower precision, but the highest recall 
across all feature subsets, suggesting that without 18F-FDG-
PET features, distribution-based affinity for majority class 
prediction was stronger, thereby proving the importance of 
consideration of 18F-FDG-PET signal, especially in APOE4-
nc. The overall small differences in F1/10-score observed in 

Fig. 1  Features relevant for the classification of Aβ- in APOE4-nc 
(top row) and Aβ+ in APOE4-c (bottom row). Thresholded at 0.001 
for visibility. (a) Several left-hemispheric, especially frontal and tem-
poral brain regions were highly important for the classification of Aβ- 
in APOE4-nc. The two most important single brain regions and age 
(the most important non-imaging feature) are displayed in (b), delin-
eating that while Aβ- individuals were younger, SUVR distribution in 

single relevant brain regions was not different between predicted Aβ- 
and Aβ + . (c) AD-typical brain regions were relevant for the classi-
fication of Aβ+ in APOE4-c. Violin plots of SUVR in the two most 
relevant brain regions and age (irrelevant to the classification task, 
depicted for comparison to APOE4-nc) are shown in (d). Inflated 
brain representation created with cat12
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ablating features for the APOE4-c gatekeeping algorithms 
suggest that the input features did not significantly improve 
a priori probabilities and is in line with the severe overfitting 
observed when testing the classifier on balanced subsets.

Comparison of multimodality‑predicted and gold 
standard A‑status in dementia risk assessment

In the second part of our analyses, we investigated whether 
multimodality-predicted A-status provided risk estimates for 
progression to dementia comparable to the risk indicated 
by gold standard A-status. In the previous step, classifiers 
were chosen that maximized the F1/10-score of the majority 
class (Aβ- in APOE4-nc and Aβ + in APOE4-c); therefore, 
no consideration was given to predicted and gold standard 
minority classes. At least two follow-up scans were available 
for a subset of 60 test subjects in the APOE4-nc (80%) and 
58 individuals from the APOE4-c group (79%). The average 
(SD) follow-up time was 56 (30) months for APOE4-nc and 
49 (30) months for APOE4-c.

In the APOE4-nc group, five of 41 Aβ- individuals 
(12%) were diagnosed with dementia in following years. In 
comparison, zero out of 23 predicted Aβ- individuals (0%) 
progressed to dementia. Of the five gold standard Aβ- indi-
viduals who converted to dementia, four were possible AD 
patients and one had non-AD dementia. Thus, predicted 
amyloid negativity potentially depicts long-term stability 

against cognitive decline of unresolved aetiology in MCI 
patients as good, or even slightly better than true amyloid 
negativity.

Among APOE4-c, 21 out of 49 Aβ + individuals (43%) 
received a diagnosis of dementia in the following years. 
In comparison, 17 of 43 predicted Aβ + individuals (40%) 
progressed to dementia. All of these individuals were also 
Aβ+ as assessed by gold standard methods, thus constituting 
no difference between progression to dementia between gold 
standard and predicted A-status. None of the gold standard 
or predicted Aβ+ individuals were Aβ- at follow-up; thus, 
all dementia diagnoses were of AD type. Therefore, risk of 
dementia and AD was equal as assessed by gold standard 
and predicted Aβ + in APOE4-c.

Discussion

In this study, we implemented and validated a first-of-its-
kind APOE-dependent gatekeeping system, by means of 
which A-status can be determined for a subgroup of MCI 
patients from 18F-FDG-PET, age, and sex with high preci-
sion. Notably, we also demonstrated that predicted A-status 
is at least equally indicative of risk of progression to demen-
tia as gold standard A-status, thereby highlighting its clinical 
and scientific utility. For APOE4-c, poor performance of the 
classification algorithm on the balanced test sets indicated 

Table 2  Ablation study 
demonstrating the gatekeeping 
system’s high performance on 
both Aβ + and Aβ- classification

CL, classification without gatekeeper, including APOE-genotype unless marked by “-APOE”; GK, clas-
sification with gatekeeper; CL-APOE, classifier trained without APOE carriership; GK-FDG, gatekeeper 
trained without.18F-FDG-PET; GK-age, gatekeeper trained without age, GK-sex, gatekeeper trained with-
out sex; GK-sub10/GK-sub50, gatekeeper trained on reduced feature set (10%/50% of features with highest 
mutual information). F1/10 + , trained on  F1/10-score of Aβ+ ; F1/10-, trained on F1/10-score of Aβ-; ba, 
trained on balanced accuracy. Bold font shows column-wise highest value

Aβ+ Aβ-

F1/10 Precision Recall F1/10 Precision Recall

CLba 73% 73% 67% 68% 58% 54%
CLba-APOE 64% 64% 67% 53% 53% 38%
CLF1/10+ 73% 73% 64%
GK F1/10+ 87% 87% 79%
GK-FDG F1/10+ 85% 85% 85%
GK-ageF1/10+ 87% 87% 77%
GK-sexF1/10+ 83% 83% 82%
GK-sub10 F1/10+ 86% 86% 79%
GK-sub50 F1/10+ 83% 83% 79%
CLF1/10− 63% 64% 57%
GKF1/10− 86% 87% 51%
GK-FDG F1/10− 76% 76% 73%
GK-ageF1/10− 84% 84% 53%
GK-sexF1/10− 84% 84% 53%
GK-sub10 F1/10− 82% 82% 63%
GK-sub50 F1/10− 78% 78% 71%
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limited benefit of the gatekeeping approach in this group. 
Based on these results, we suggest a pipeline that directs 
further action in the assessment of A-status in MCI depicted 
in Fig. 2. Whereas all APOE4-c recommended an amyloid 
PET or CSF assessment of amyloid, APOE4-nc only receive 
amyloid testing based on the specific results of the classifica-
tion procedure.

Following the A-T-N classification scheme proposed by 
Jack and colleagues, to be considered as having underlying 
AD pathology, MCI patients must have a positive A-status 
[6]. Consequently, key eligibility criteria for the prescrip-
tion of newly emerging anti-amyloid drugs, such as adu-
canumab (Aduhelm™), as well as clinical trials thereof, 
include A-status assessment [e.g., 3]. However, observation 
of a positive T- or N-status aids in confirming an AD diag-
nosis and in monitoring cognitive decline [6, 34]. For clini-
cal trials, it has been suggested that the additional require-
ment of a positive N-status enables to considerably reduce 
required sample sizes by identifying a patient population 
that is most likely to rapidly convert to AD [35]. The current 
gatekeeping methodology could simplify the establishment 
of complete A-T-N classifications in clinical practice and 
trials through the possibility to cost-efficiently extract some 
individuals’ A-status from available data, and thus contrib-
ute to the exclusion of Aβ- individuals from trials without 

added risk, cost, and time. Given the strong association of 
T- and N-markers, it seems likely that the classification of 
T-status is possible from markers of neurodegeneration, 
which could be investigated by future research.

In line with previous literature, we found that among 
APOE4-nc, high brain metabolism in several left hemi-
spheric frontotemporal brain structures was associated with 
an Aβ- prediction and consequently reduced probability of 
progressing to AD. These brain regions are known to be pro-
gressively affected in the course of AD [36]. Furthermore, 
left-dominant pathology and metabolic vulnerability in early 
AD have repeatedly been demonstrated [, 37–39]. Given the 
overall high performance of Aβ- classification in APOE4-
nc, the lack of a clear trend in SUVR distribution in Aβ- vs 
Aβ + predictions likely points towards the significance of 
left-dominant metabolism changes in brain networks, rather 
than single brain regions [40, 41]. Classification of amyloid 
status from SUVR covariance patterns of tau pathology has 
previously been demonstrated [42] and presents a promising 
avenue for future research.

The APOE4-c-based classifiers proved not to be better 
than chance in the balanced test sets, and ablating even all 
18F-FDG-PET features resulted in only a small decrease in 
performance. Importantly, this result strongly underlines the 
need to understand and question the complex behavior of 

Fig. 2  Suggested gatekeeping system with “OR” (X) gates enabling 
reduction in the overall need for amyloid testing in MCI patients. 
After screening for APOE carriership, individuals’.18F-FDG-PET 
scans as well as age and sex information provided to the respective 

machine learning classifier. In case of an Aβ- prediction for APOE4-
nc, explicit amyloid testing can be spared. Figure created with 
BioRender
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machine learning classifiers. The observation that the mul-
timodal classification of Aβ+ showed no clinical benefit for 
APOE4-c likely results from the very high a priori probabil-
ity of APOE4-c participants in the current study to be Aβ+ , 
and the fact that amyloid deposition naturally increases with 
age [43]. While the distinction of amyloid negative and posi-
tive individuals is critical for clinical diagnoses and patient 
selection as described earlier, biologically, amyloid plaque 
deposition is a continuous process. The current gold standard 
for an A-status cut-off value is solely based on amyloid meas-
ures (PET and/or CSF). However, it was shown that APOE4-
nc and APOE4-c display differential susceptibility to amyloid 
pathology [15] and a recent study found that an amyloid posi-
tivity threshold applied as a function of APOE-ε4 carriership 
best distinguished Aβ+ from Aβ- individuals, with a higher 
threshold being applied to APOE4-c than APOE4-nc [44]. 
If APOE-dependent cut-off values are validated in further 
studies, they might also improve predictability of Aβ+ among 
APOE4-c with a gatekeeping methodology.

Some limitations of our study should be acknowledged. 
First, classification performance of Aβ- in APOE4-nc in 
the IMC was only 71%. Post hoc analyses revealed that 
test set classification of Aβ- in APOE4-nc who received a 
PIB-PET in the ADNI sample was 100% precise. However, 
due to the very low number of participants in the assessed 
ADNI test sample measured with this tracer (n = 3), a reli-
able estimate of the unique precision in predicting PIB-PET 
positivity cannot be assessed, and it still appears possible 
that the drop in performance may have been caused by the 
low representation of gold standard A-status derived from 
this specific tracer in the ADNI (ntrain= 7). Alternatively, we 
speculate that this drop in performance may be attributed to 
the difference in variability of cognitive impairment in MCI 
populations. In our sample, IMC APOE4-nc showed margin-
ally higher ratings on the CDR sum of boxes (t(263) = 1.95, 
p = 0.05) and thus represented an overall more cognitively 
impaired population, with potentially stronger neurodegen-
erative patterns present. Another limitation is that in order 
to minimize efforts to acquire data for amyloid status classi-
fication in clinical practice, we refrained from using several 
imaging modalities in this work. Through the lack of MRI 
information for the current method, we cannot exclude the 
possibility that a positive A-status also reflected vascular 
amyloid deposition, rather than pure cerebral AD pathol-
ogy. Another limitation is that ADNI data is not representa-
tive of the general population, as Caucasian individuals 
are highly over-represented [45]. For the IMC sample, no 
information on ethnic background was collected. Epide-
miological studies have revealed that there are profound 
differences in APOE-ε4 prevalence among AD patients, 
depending on their geographical background, with higher 
prevalence in Northern/Central Europe and Australia and 
lower prevalence in Southern Europe and Asia [46]. Other 

studies confirm location-dependent genotype differences of 
APOE [47], thus pointing towards AD disease heterogene-
ity. Given the population bias in our sample, extrapolation 
to the general population should be done with caution and 
further studies with currently under-represented groups must 
be done to validate these findings. We also acknowledge 
that research building medical gatekeeping systems with 
machine learning is an uncharted territory. By including 
conventional classification into the ablation study, we could 
show that gatekeeping systems provide a significant advan-
tage to the assessment of A-status compared to classifica-
tion approaches. Yet, future studies must confirm the clinical 
applicability of the gatekeeping approach, F1/10-score as the 
optimal metric, as well as the choice of 18F-FDG-PET, age, 
and sex as optimal input features. It will be especially inter-
esting to assess the gatekeeping methodology using MRI 
or plasma biomarkers instead of 18F-FDG-PET, which have 
higher availability and lower cost compared to 18F-FDG-
PET. Recent work on plasma biomarkers has shown that 
they are associated with gold standard measures of amyloid 
status [8, 9] and that plasma amyloid biomarkers detect very 
early abnormal amyloid levels [10]. Thus, plasma biomark-
ers may represent a well-suited predictor of PET A-status 
in future machine learning classification approaches. PET 
A-status is required to start anti-amyloid therapies or clinical 
trials, as it represents the actual distribution of the therapeu-
tic target (amyloid plaques) in the brain. Usage of plasma or 
other, fluid biomarkers per se for the stratification of patients 
is currently not recommended, as this might result in the 
inclusion of patients before sufficiently abnormal amyloid 
plaque deposition levels have been reached in the brain. It 
should be noted, however, that using plasma biomarkers for 
classification would reduce the amount of information fed 
to the classifier, which is especially relevant, when consid-
ering that these biomarkers show fluctuations, even during 
the day [6]. Finally, with an 18F-FDG-PET scan as the basis 
of the classification procedure for PET A-status, not only 
AD, but other potential sources of MCI can be investigated. 
Nevertheless, implementation of a multivariate gatekeeping 
approach using several blood biomarkers, e.g., measures of 
amyloid, neurofilament light, and tau, in combination with 
available information (clinical/demographic variables) will 
be an interesting topic for future research.

In conclusion, we developed a first-of-its-kind gatekeeping 
methodology for the approximation of A-status in MCI based 
on 18F-FDG-PET, age, and sex for APOE4-nc and APOE4-
c. The gatekeeping system not only provided highly precise 
predictions for APOE4-nc, but predicted Aβ- showed similar 
(possibly even better) risk for progression to dementia as Aβ- 
assessed with gold standard methods. In the future, the imple-
mentation of gatekeeping methodologies could enable better 
estimation of individual risk for developing AD based on exist-
ing biomarker information. In addition, it could support more 
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efficient selection of patients who would benefit from further 
etiological clarification using additional diagnostic tests.
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